生物学的分支学科。它是研究生命物质的化学组成、结构及生命活动过程中各种化学变化的基础生命科学。
生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。研究各种天然物质的化学称为
关注公众号:diyijc_com
问题反馈
生物学的分支学科。它是研究生命物质的化学组成、结构及生命活动过程中各种化学变化的基础生命科学。
生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。研究各种天然物质的化学称为生物有机化学。研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。
发展简史
生物化学是生命科学中最古老的学科之一(之二:遗传学、细胞学)。
科学的发展总是由粗到细再到粗,或综—分—综。
最早的自然科学就是数、理、化、天、地、生。生就是生物学,研究的就是一些力所能及的生物形态观察、分类等。
随着各学的发展,学科间在理论知识和技术上相互渗透,尤其是化学、物理学的渗透,那么到18世纪,一些从事化学研究的科学家,如拉瓦锡、舍勒等人和一些药剂师、炼丹师转向生物领域,这就为生物化学的诞生播下了种子。这时生物学就逐渐分离成生理化学、遗传学、细胞学。
19世纪末,又从生理化学中分离出生物化学,20世纪中后期又从生物化学中分离出分子生物学并与经典遗传学结合为分子遗传学,还有发育生物学,结构生物学等等。现在又有统一的趋势,叫二十一世纪的“统一生物学”或干脆叫生命科学,生物工程严格讲应是生物技术与工程学的杂交学科。
1、 静态生物化学时期(1920年以前)研究内容以分析生物体内物质的化学组成、性质和含量为主。
2、 动态生物化学时期(1950年以前)这是一个飞速发展的辉煌时期,
随着同位素示踪技术、色谱技术等物理学手段的广泛应用,生物化学从单纯的组成分析深入到物质代谢途径及动态平衡、能量转化,光合作用、生物氧化、糖的分解和合成代谢、蛋白质合成、核酸的遗传功能、酶、维生素、激素、抗生素等的代谢,都基本搞清。
3、 机能生物化学时期(1950年以后)真正意义上的现代的生命化学。蛋白质化学和和核酸化学成为研究重点。
生物化学研究深入到生命的本质和奥秘:运动、神经、内分泌、生长、发育、繁殖等的分子机理。
1953年,DNA双螺旋结构、近代实验技术和研究方法奠定了现代分子生物学的基础,从此,核酸成了生物化学研究的热点和重心。
1776—1778年,瑞典化学家舍勒(Sheele)从天然产物中分离出:
甘 油 glycerol
苹果酸 malic acid 苹果
柠檬酸 citric acid 柠檬
尿 酸 uric acid 膀胱结石
酒石酸 tartaric acid 酒石
1937年,英国生物化学家克雷布斯(Krebs)发现三羧酸循环,获1953年诺贝尔生理学奖。
1953年,沃森—克里克(Watson—Crick)确定DNA双螺旋结构,获1962年诺贝尔生理、医学奖。
1955年,英国生物化学家桑格尔(Sanger)确定牛胰岛素结构,获1958年诺贝尔化学奖。
1980年,桑格尔和吉尔伯特(Gilbet)设计出测定DNA序列得方法,获1980年诺贝尔化学奖。
1984年,化学奖,Bruce Merrifield(美国),建立和发展蛋白质化学合成方法。
1994年,生理、医学,Alfred G.Gilman(美国),发现G蛋白及其在细胞内信号转导中的作用。
1、Rechard J.Roberts(美)等,发现断裂记因化学奖
2.Karg B. Mallis(美)发明PCR方法。
3.Michaet Smith(加拿大)建立DNA合成用与定点诱变研究
1996年,Petr c. Doherty(美)等,发现T细胞对病毒感染细胞的识别和MHC(主要组织相容性复合体)限制。生理医学奖
1997年
1.stanley B.prusiner(美)发现一中新型的致病因子—感染性蛋白颗粒“pnion”(疯牛病)生理医学奖
2 paul D.Boyer(美)等,说明ATP酶促成机制化学奖
3 Jens c. skon(丹麦)发现输送离子的NaKATP酶。
1998年,生理、医学,Rolert F. Furchgott(美国),发发现NO是心血管系统的信号分子。
生物化学与二十一世纪生命科学展望
1、 生物化学和分子生物学是二十一世纪生命科学的带头学科。学科热点:基因组、蛋白质组、生物克隆
2、 生物化学与农业原始农业:采集与狩猎,游牧式
传统农业:原始的种植业,畜牧业
现代农业:化肥,农药;绿色革命(杂种优势),生物防治,分子育种。
分子农业(工厂化农业):离开土地,细胞水平甚至是分子水平的生化加工业,仿生学原理。
植物:光合作用 → 固定化细胞培养,叶绿体→光合器。
动物:细胞培养。
英语
拼音] [sheng wu hua xue]
biochemistry
生物化学这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。例如18世纪80年代,A.-L.拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是动物呼吸的逆过程。又如1828年F.沃勒首次在实验室中合成了一种有机物──尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。1860年L.巴斯德证明发酵是由微生物引起的,但他认为必需有活的酵母才能引起发酵。1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进行如发酵这样复杂的生命活动,终于推翻了“生机论”。
研究内容
生物体的化学组成 除了水和无机盐之外,活细胞的有机物主要由碳原子与氢、氧、氮、磷、硫等结合组成,分为大分子和小分子两大类。前者包括蛋白质、核酸、多糖和以结合状态存在的脂质;后者有维生素、激素、各种代谢中间物以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等。在不同的生物中,还有各种次生代谢物,如萜类、生物碱、毒素、抗生素等。
虽然对生物体组成的鉴定是生物化学发展初期的特点,但直到今天,新物质仍不断在发现。如陆续发现的干扰素、环核苷一磷酸、钙调蛋白、粘连蛋白、外源凝集素等,已成为重要的研究课题。有的简单的分子,如作为代谢调节物的果糖-2,6-二磷酸是1980年才发现的。另一方面,早已熟知的化合物也会发现新的功能,20世纪初发现的肉碱,50年代才知道是一种生长因子,而到60年代又了解到是生物氧化的一种载体。多年来被认为是分解产物的腐胺和尸胺,与精胺、亚精胺等多胺被发现有多种生理功能,如参与核酸和蛋白质合成的调节,对DNA超螺旋起稳定作用以及调节细胞分化等。
新陈代谢与代谢调节控制 新陈代谢由合成代谢和分解代谢组成。前者是生物体从环境中取得物质,转化为体内新的物质的过程,也叫同化作用;后者是生物体内的原有物质转化为环境中的物质,也叫异化作用。同化和异化的过程都由一系列中间步骤组成。中间代谢就是研究其中的化学途径的。如糖元、脂肪和蛋白质的异化是各自通过不同的途径分解成葡萄糖、脂肪酸和氨基酸,然后再氧化生成乙酰辅酶A,进入三羧酸循环,最后生成二氧化碳。
在物质代谢的过程中还伴随有能量的变化。生物体内机械能、化学能、热能以及光、电等能量的相互转化和变化称为能量代谢,此过程中ATP起着中心的作用。
新陈代谢是在生物体的调节控制之下有条不紊地进行的。这种调控有3种途径:①通过代谢物的诱导或阻遏作用控制酶的合成。这是在转录水平的调控,如乳糖诱导乳糖操纵子合成有关的酶;②通过激素与靶细胞的作用,引发一系列生化过程,如环腺苷酸激活的蛋白激酶通过磷酰化反应对糖代谢的调控;③效应物通过别构效应直接影响酶的活性,如终点产物对代谢途径第一个酶的反馈抑制。生物体内绝大多数调节过程是通过别构效应实现的。
生物大分子的结构与功能 生物大分子的多种多样功能与它们特定的结构有密切关系。蛋白质的主要功能有催化、运输和贮存、机械支持、运动、免疫防护、接受和传递信息、调节代谢和基因表达等。由于结构分析技术的进展,使人们能在分子水平上深入研究它们的各种功能。酶的催化原理的研究是这方面突出的例子。蛋白质分子的结构分4个层次,其中二级和三级结构间还可有超二级结构,三、四级结构之间可有结构域。结构域是个较紧密的具有特殊功能的区域,连结各结构域之间的肽链有一定的活动余地,允许各结构域之间有某种程度的相对运动。蛋白质的侧链更是无时无刻不在快速运动之中。蛋白质分子内部的运动性是它们执行各种功能的重要基础。
80年代初出现的蛋白质工程,通过改变蛋白质的结构基因,获得在指定部位经过改造的蛋白质分子。这一技术不仅为研究蛋白质的结构与功能的关系提供了新的途径;而且也开辟了按一定要求合成具有特定功能的、新的蛋白质的广阔前景。
核酸的结构与功能的研究为阐明基因的本质,了解生物体遗传信息的流动作出了贡献。碱基配对是核酸分子相互作用的主要形式,这是核酸作为信息分子的结构基础。脱氧核糖核酸的双螺旋结构有不同的构象,J.D.沃森和F.H.C.克里克发现的是B-结构的右手螺旋,后来又发现了称为 Z-结构的左手螺旋。DNA还有超螺旋结构。这些不同的构象均有其功能上的意义。核糖核酸包括信使核糖核酸(mRNA)、转移核糖核酸(tRNA)和核蛋白体核糖核酸(rRNA),它们在蛋白质生物合成中起着重要作用。新近发现个别的RNA有酶的功能。
基因表达的调节控制是分子遗传学研究的一个中心问题,也是核酸的结构与功能研究的一个重要内容。对于原核生物的基因调控已有不少的了解;真核生
更新时间:2013-12-09 14:07