在本教程中,电工电子技术对电路、半导体、晶体管以及逻辑电路等方面进行了研究,涉及范围广泛。在学习本教程之前,让我们先来对电工电子技术的有关内容进行简单的了解。
电工电子技术主要介绍电路的基本概念、基本定律及分析方法; 电路的暂态分析; 单相正弦交流电路; 三相电路; 半导体基础知识; 晶体管及基本放大电路; 集成运算放大器及应用; 数字逻辑电路
关注公众号:diyijc_com
问题反馈
在本教程中,电工电子技术对电路、半导体、晶体管以及逻辑电路等方面进行了研究,涉及范围广泛。在学习本教程之前,让我们先来对电工电子技术的有关内容进行简单的了解。
电工电子技术主要介绍电路的基本概念、基本定律及分析方法; 电路的暂态分析; 单相正弦交流电路; 三相电路; 半导体基础知识; 晶体管及基本放大电路; 集成运算放大器及应用; 数字逻辑电路基础; 逻辑代数与逻辑函数; 组合逻辑电路以及时序逻辑电路。
电子技术研究的是电子器件及其电子器件构成的电路的应用。半导体器件是构成各种分立、集成电子电路最基本的元器件。随着电子技术的飞速发展,各种新型半导体器件层出不穷。现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整 流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
更新时间:2017-09-01 11:13