很多学习数学的朋友都知道,概率论是研究随机现象数量规律的数学分支。今天编者同您分享的这部概率论教学视频是清华大学的优质视频。通过对它的观看和学习能使您全面、系统的掌握概率论的相关知识。
贝叶斯定理机率论或概率论是研究随机性或不确定性等现象的数学。更精确地说,机率论是用来模拟实验在同一环境下会产生不同结果的情状。典型的随机实验有掷骰子、扔硬币、抽扑克
关注公众号:diyijc_com
问题反馈
很多学习数学的朋友都知道,概率论是研究随机现象数量规律的数学分支。今天编者同您分享的这部概率论教学视频是清华大学的优质视频。通过对它的观看和学习能使您全面、系统的掌握概率论的相关知识。
贝叶斯定理机率论或概率论是研究随机性或不确定性等现象的数学。更精确地说,机率论是用来模拟实验在同一环境下会产生不同结果的情状。典型的随机实验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。
如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。
概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。现在,概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中 。
统计概率是建立在频率理论基础上的,分别由英国逻辑学家约翰(JohnVenn1834-1923)和奥地利数学家理查德(RichardVonMises1883-1953)提出,他们认为,获得一个事件的概率值的唯一方法是通过对该事件进行100次,1000次或者甚至10000次的前后相互独立的n次随机试验,针对每次试验均记录下绝对频率值和相对频率值hn(A),随着试验次数n的增加,会出现如下事实,即相对频率值会趋于稳定,它在一个特定的值上下浮动,也即是说存在着一个极限值P(A),相对频率值趋向于这个极限值。这个极限值被称为统计概率,表示为:例如,若想知道在一次掷骰子的随机试验中获得6点的概率值可以对其进行3000次前后独立的扔掷试验,在每一次试验后记录下出现6点的次数,然后通过计算相对频率值可以得到趋向于某一个数的统计概率值。
更新时间:2011-11-12 20:19