金融数学不仅是一门新兴的交叉学科,而且是目前十分活跃的前沿学科之一。它利用数学工具研究金融,进行数学建模、理论分析、数值计算等定量分析,以求找到金融学内在规律并用以指导实践。
金融数学是一门新兴学科,是“金融高技术 ”的重要组成部分。研究金融数学有着重要的意义。 金融数学总的研究目标是利用我国数学界某些方面的优势,围绕金融市场的均衡与有价证券定价
关注公众号:diyijc_com
问题反馈
金融数学不仅是一门新兴的交叉学科,而且是目前十分活跃的前沿学科之一。它利用数学工具研究金融,进行数学建模、理论分析、数值计算等定量分析,以求找到金融学内在规律并用以指导实践。
金融数学是一门新兴学科,是“金融高技术 ”的重要组成部分。研究金融数学有着重要的意义。 金融数学总的研究目标是利用我国数学界某些方面的优势,围绕金融市场的均衡与有价证券定价的数学理论进行深入剖析,建立适合我国国情的数学模型,编写一定的计算机软件,对理论研究结果进行仿真计算,对实际数据进行计量经济分析研究,为实际金融部门提供较深入的技术分析咨询。金融数学是在两次华尔街革命的基础上迅速发展起来的一门数学与金融学相交叉的前沿学科。其核心内容就是研究不确定随机环境下的投资组合的最优选择理论和资产的定价理论。套利、最优与均衡是金融数学的基本经济思想和三大基本概念。在国际上,这门学科已经有50 多年的发展历史,特别是近些年来,在许多专家、学者们的努力下,金融数学中的许多理论得以证明、模拟和完善。金融数学的迅速发展,带动了现代金融市场中金融产品的快速创新,使得金融交易的范围和层次更加丰富和多样。这门新兴的学科同样与我国金融改革和发展有紧密的联系,而且其在我国的发展前景不可限量。
在国内不能回避这样一个事实:受过高等教育的专业人士都可以读懂国内经济类,金融类核心期刊,但国内金融学专业的本科生却很难读懂本专业的国际核心期刊《Journal of Finance》,证券投资基金经理少有人去阅读《Joural of Portfolio Management》,其原因不在于外语的熟练程度,而在于内容和研究方法上的差异,国内较多停留在以描述性分析为主着重描述金融的定义,市场的划分及金融组织等,或称为描述金融;而国外学术界以及实务界则以数量性分析为主,比如资本资产定价原理,衍生资产的复制方法等,或称为分析金融,即使在国内金融学的教材中,虽然涉及到了标的资产(Underlying asset)和衍生资产(Derivative asset)定价,但对公式提出的原文证明也予以回避,这种现象是不合理的,产生这种现象的原因有如下几个方面:首先,根据研究方法的不同,我国金融学科既可以归到我国哲学社会科学规划办公室,也可以归到国家自然科学基金委员会管理科学部,前者占主要地位,且这支队伍大多来自经济转轨前的哲学和政治学队伍,因此研究方法多为定性的方法。而西方正好相反,金融研究方向的队伍具有很好的数理功底。其次是我国的金融市场的实际环境所决定。我国证券市场刚起步,也没有一个统一的货币市场,投资者队伍主要由中小投资者构成,市场投机成分高,因此不会产生对现代投资理论的需求,相应地,学术界也难以对此产生研究的热情。
然而数学技术以其精确的描述,严密的推导已经不容争辩地走进了金融领域。自从1952年马柯维茨(Markowitz)提出了用随机变量的特征变量来描述金融资产的收益性,不确定性和流动性以来,已经很难分清世界一流的金融杂志是在分析金融市场还是在撰写一篇数学论文。再回到Collins的讲话,在金融证券化的趋势中,无论是我们采用统计学的方法分析历史数据,寻找价格波动规律,还是用数学分析的方法去复制金融产品,谁最先发现了在规律,谁就能在瞬息万变的金融市场中获取高额利润。尽管由于森严的进入堡垒,数学进入金融领域受到了一的排斥和漠视,然而为了追求利润,未知的恐惧显得不堪一击。
于是,在未来我们可以想象有这样一个充满美好前景的产业链:金融市场--金融数学--计算机技术。金融市场存在巨大的利润和高风险,需要计算机技术帮助分析,然而计算机不可能大概,左右等描述性语言,它本质上只能识别由0和1构成的空间,金融数学在这个过程中正好扮演了一个中介角色,它可以用精确语言描述随机波动的市场。比如,通过收益率状态矩阵在无套利的情形下找到了无风险贴现因子。因此,金融数学能帮助IT产业向金融产业延伸,并获取自己的利润空间。
更新时间:2011-11-12 20:19