数值分析是理工科各专业的一门专业基础课。这部数值分析教学视频为大家介绍了高次代数方程与超越方程数值解法、解线性方程组的直接法与迭代法、矩阵特征值与特征向量的数值解法、多项式插值与函数最优逼近、数值积分与数值微分、常微分方程初值问题数值解法等内容。
数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数
关注公众号:diyijc_com
问题反馈
数值分析是理工科各专业的一门专业基础课。这部数值分析教学视频为大家介绍了高次代数方程与超越方程数值解法、解线性方程组的直接法与迭代法、矩阵特征值与特征向量的数值解法、多项式插值与函数最优逼近、数值积分与数值微分、常微分方程初值问题数值解法等内容。
数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。为计算数学的主体部分。
数百年前,人类已经将数学应用在建筑、战争、会计,以及许多领域之上,最早的数学大约是西元前1800年巴比伦人泥板(Babylonian tablet )上的计算式子。例如所谓的勾股数(毕氏三元数),(3, 4, 5),是直角三角形的三边长比,在巴比伦泥板上已经发现了开根号的近似值。
数值分析在传统上一直不断的在改进,因为像巴比伦人的近似值,至今仍然是近似值,即使用电脑计算也找不到最精确的值。
数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。
数学模型是数学抽象的概括的产物,其原型可以是具体对象及其性质、关系,也可以是数学对象及其性质、关系。数学模型有广义和狭义两种解释.广义地说,数学概念、如数、集合、向量、方程都可称为数学模型,狭义地说,只有反映特定问题和特定的具体事物系统的数学关系结构方数学模型大致可分为二类:(1)描述客体必然现象的确定性模型,其数学工具一般是代效方程、微分方程、积分方程和差分方程等,(2)描述客体或然现象的随机性模型,其数学模型方法是科学研究相创新的重要方法之一。在体育实践中常常提到优秀运动员的数学模型。如经调查统计.现代的世界级短跑运动健将模型为身高1.80米左右、体重70公斤左右,100米成绩10秒左右或更好等。
用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。
更新时间:2012-06-12 08:31