数学分析是大学数学专业一门重要的专业基础课,它是一个较为完整的数学学科,也是分析学中最古老、最基本的分支。在本教程中,我们将对数学分析相关知识进行学习,下面我们就来了解一下。
数学分析的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
数学分析的基本方法是
关注公众号:diyijc_com
问题反馈
数学分析是大学数学专业一门重要的专业基础课,它是一个较为完整的数学学科,也是分析学中最古老、最基本的分支。在本教程中,我们将对数学分析相关知识进行学习,下面我们就来了解一下。
数学分析的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
数学分析的基本方法是极限的方法,或者说是无穷小分析。洛比达(L’Hospital,G.-F.-A. de)于1696年在巴黎出版的世界上第一本微积分教科书,欧拉于1748年出版的两卷本沟通微积分与初等分析的书,书名中都出现过无穷小分析这个词。在微积分学发展的初期,这种新的方法显示出巨大的力量,因而得到大批重要的成果。许多与微积分有关的新的数学分支,如变分法、微分方程以至于微分几何和复变函数论,都在18—19世纪初发展起来。然而,初期的分析还是比较粗糙的,被新方法的力量鼓舞的数学家们经常不顾演绎的逻辑根据,使用着直观的猜测和自相矛盾的推理,以致在整个18世纪,对这种方法的合理性普遍存在着怀疑。这些怀疑在很大程度上是从当时经常使用的无穷小的含义与用法上引起的。随意使用与解释无穷小导致了混乱和神秘感。许多人参与了无穷小本质的论争,其中有些人,如拉格朗日(Lagrange,J.-L.),试图排除无穷小与极限,把微积分代数化。论争使函数与极限的概念逐渐明朗化。越来越多的的数学家认识到,必须把数学分析的概念与其在客观世界的原型以及人的直觉区分开来。
因而,从19世纪初开始了一个一个把分析算术化(使分析成为一种像算术那样的演绎系统)为特征的新的数学分析的批判改造时期。柯西于1821年出版的《分析教程》是分析严密化的一个标志.在这本书中,柯西建立了接近现代形式的极限,把无穷小定义为趋于零的变量,从而结束了百年的争论.在极限的基础上,柯西定义了函数的连续性、导数、连续函数的积分和级数的收敛性(后来知道,波尔查诺(Bolzano,B.)同时也做过类似的工作)。进一步,狄利克雷于(Dirichlet,P.G.L.)1837年提出了函数的严格定义,魏尔斯特拉斯引进了极限的ε-δ定义。基本上实现了分析的算术化,使分析从几何直观的局限中得到了“解放”,从而驱散了17—18世纪笼罩在微积分外面的神秘云雾。
继而在此基础上,黎曼(Riemann,(G.F.)B.)于1854年和达布(Darboux,(J.-)G.)于1875年对有界函数建立了严密的积分理论,19世纪后半叶,戴德金(Dedekind,J.W.R)等人完成了严格的实数理论。至此,数学分析的理论和方法完全建立在牢固的基础之上,基本上形成了一个完整的体系,也为20世纪现代分析的发展铺平了道路。
更新时间:2013-11-04 21:00