变分法(calculus of variations),是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从
关注公众号:diyijc_com
问题反馈
变分法(calculus of variations),是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。譬如,这样的泛函可以通过未知函数的积分和它的导数来构造。变分法最终寻求的是极值函数:它们使得泛函取得极大或极小值。有些曲线上的经典问题采用这种形式表达:一个例子是最速降线,在重力作用下一个粒子沿着该路径可以在最短时间从点A到达不直接在它底下的一点B。在所有从A到B的曲线中必须极小化代表下降时间的表达式。
《变分法》是工程力学专业本科生的专业课之一,是选修课,是《弹性力学》课程提高和延伸部分。用广泛的变分方法来解决弹性力学的边值问题,建立了弹性力学的几个变分原理,从这些变分原理出发,用一致的方法导出各种类型弹性力学的平衡方程。变分原理为各种近似解奠定了理论基础,是从事固体力学研究人员必备的专业理论,为进一步学习有限元理论,塑性力学等提供了必要的理论基础。
更新时间:2014-11-25 17:00