这是麻省理工学院的18.06课程,线性代数,主讲者是 Gilbert Strang教授,吉尔伯特.斯特朗教授。课本用的是《线性代数导论》。
“线性代数”,同微积分一样,是高等数学中两大入门课程之一,不仅是一门非常好的数学课程,也是一门非常好的工具学科
关注公众号:diyijc_com
问题反馈
这是麻省理工学院的18.06课程,线性代数,主讲者是 Gilbert Strang教授,吉尔伯特.斯特朗教授。课本用的是《线性代数导论》。
“线性代数”,同微积分一样,是高等数学中两大入门课程之一,不仅是一门非常好的数学课程,也是一门非常好的工具学科,在很多领域都有广泛的用途。本课程讲述了矩阵理论及线性代数的基本知识,侧重于那些与其他学科相关的内容,包括方程组、向量空间、行列式、特征值、相似矩阵及正定矩阵。
我们看到有网友吐槽,说老外上大学才学的《线性代数》,在咱们中国的学生高中就要学,太TM难了。
深深表示理解。中国的数学教育比较着急——学得太深,语文教育却刚好相反——学得太浅。所以,我们看,现在既没有大师级的科学家,也没有大师级的文史学家。当然,那些年近百岁的老先生泰斗除外,因为他们没人经历过中国的现代教育。
还是回到这部课程:线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。
线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。
“以直代曲”是人们处理很多数学问题时一个很自然的思想。很多实际问题的处理,最后往往归结为线性问题,它比较容易处理。因此,线性代数在工程技术和国民经济的许多领域都有着广泛的应用,是一门基本的和重要的学科。线性代数的计算方法是计算数学里一个很重要的内容。
更新时间:2015-05-19 10:56