我们都知道材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。它主要研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。学习材料力学知识要求有高等数学和理论力学做基础,如果您已经具备那么就来观看我们为您收录的材料力学教程来详细系统学习材料力学吧!
材料力学基本假设1 连续性假设——
关注公众号:diyijc_com
问题反馈
我们都知道材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。它主要研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。学习材料力学知识要求有高等数学和理论力学做基础,如果您已经具备那么就来观看我们为您收录的材料力学教程来详细系统学习材料力学吧!
材料力学基本假设1 连续性假设——组成固体的物质内毫无空隙地充满了固体的体积。2均匀性假设--在固体内任何部分力学性能完全一样3 各向同性假设——材料沿各个不同方向力学性能均相同4 小变形假设——变形远小于构件尺寸,便于用变形前的尺寸和几何形状进行计算研究内容在人们运用材料进行建筑、工业生产的过程中,需要对材料的实际承受能力和内部变化进行研究,这就催生了材料力学。运用材料力学知识可以分析材料的强度、刚度和稳定性。材料力学还用于机械设计使材料在相同的强度下可以减少材料用量,优化机构设计,以达到降低成本、减轻重量等目的。在材料力学中,将研究对象被看作均匀、连续且具有各向同性的线性弹性物体。但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际方法对材料进行实验比较。材料在机构中会受到拉伸或压缩、弯曲、剪切、扭转及其组合等变形。根据胡克定律(Hooke"s law),在弹性限度内,物体的应力与应变成线性关系。
通常认为,意大利科学家伽利略(Galileo)《关于力学和局部运动的两门新科学的对话和数学证明》—书的发表(1638年)是材料力学开始形成一门独立学科的标志。在该书中这位科学巨匠尝试用科学的解析方法确定构件的尺寸,讨论的第—问题是直杆轴向拉伸问题,得到承载能力与横截面积成正比而与长度无关的正确结论。
研究方法主要有:①简化计算方法。材料力学处理一维问题的基本方法。包括载荷简化、物性关系简化以及结构形状简化等。②平衡方法。杆件整体若是平衡的,则其上任何局部都一定是平衡的,这是分析材料力学中各类平衡问题的基础。确定内力分量及其相互关系、确定梁的剪应力、分析一点的应力状态等均以此为依据。③变形协调分析方法。对结构而言,各构件变形间必须满足协调条件。据此,并利用物性关系即可建立求解静不定(仅用静力平衡方程不能确定结构全部内力和支座反力)问题的补充方程。对于弹性构件,其各部分变形之间也必须满足协调条件。据此,分析杆件横截面上的应力时,通过“平面假设”,并借助于物性关系,即可得到横截面上的应力分布规律。④能量方法。将能量守恒定律、虚位移原理、虚力原理、最小势能原理与最小余能原理应用于杆件或杆件系统,得到若干分析与计算方法,包括导出平衡或协调方程、确定指定点位移或杆件位移函数的近似方法、判别杆件平衡稳定性并计算临界载荷、动载荷作用效应的近似分析等。⑤叠加方法。在线弹性和小变形的条件下,且当变形不影响外力作用时,作用在杆件或杆件系统上的载荷所产生的某些效应是载荷的线性函数,因而力的独立作用原理成立。据此,可将复杂载荷分解为若干基本或简单的情形,分别计算它们所产生的效果,再将这些效果叠加便得到复杂载荷的作用效果。可用于确定复杂载荷下的位移、组合载荷作用下的应力、确定应力强度因子等。正确而巧妙地应用结构与载荷的对称性与反对称性,则是叠加法的特殊情形。⑥类比法。表示一些量之间关系的方程与另一些量之间的关系或相似时,通过其中之简单者较容易确定与之相似的那些量,称为类比法或比拟法。由此派生出图解解析法和图解法。如:应力圆法、共轭梁法、确定弹性位移和薄壁截面扇性面积几何性质的图乘法等。
更新时间:2015-03-24 10:34