初等数论是研究数的规律,特别是整数性质的数学分支。本站分享的这部初等数论教学视频是由北京师范大学老师主讲的优质视频,其内容包括:整除,不定方程,同余,同余方程,指数与原根,连分数,素数分布的初等结果,数论函数等。
数论的本质是对素数性质的研究。整数的基本元素是素数,所以,数论的本质是对素数性质的研欧几里得的《几何原本》究。2000年前,欧几里得证明了有无
关注公众号:diyijc_com
问题反馈
初等数论是研究数的规律,特别是整数性质的数学分支。本站分享的这部初等数论教学视频是由北京师范大学老师主讲的优质视频,其内容包括:整除,不定方程,同余,同余方程,指数与原根,连分数,素数分布的初等结果,数论函数等。
数论的本质是对素数性质的研究。整数的基本元素是素数,所以,数论的本质是对素数性质的研欧几里得的《几何原本》究。2000年前,欧几里得证明了有无穷个素数。既然有无穷个,就一定有一个表示所有素数的素数通项公式,或者叫素数普遍公式。它是和平面几何学同样历史悠久的学科。高斯誉之为“数学中的皇冠” 按照研究方法的难易程度来看,数论大致上可以分为初等数论(古典数论)和高等数论(近代数论)。
数论就是指研究整数性质的一门理论。整数的基本元素是素数,所以数论的本质是对素数性质的研 究。2000年前,欧几里得证明了有无穷个素数。寻找一个表示所有素数的素数通项公式,或者叫素数普遍公式,是古典数论最主要的问题之一。它是和平面几何学同样历史悠久的学科。高斯誉之为“数学中的皇冠” 按照研究方法的难易程度来看,数论大致上可以分为初等数论(古典数论)和高等数论(近代数论)。
初等数论主要包括整除理论、同余理论、连分数理论。它的研究方法本质上说,就是利用整数环的整除性质。初等数论也可以理解为用初等数学方法研究的数论。其中最高的成就包括高斯的“二次互反律”等。
借助微积分及复分析 (即复变函数)来研究关于整数的问题,主要又可以分为乘性数论与加性数论两类。乘性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。
解析数论的创立当归功于黎曼。他发现了黎曼zeta函数之解析性质与数论中的素数分布问题存在深刻联系。确切的说, 黎曼ζ函数的非平凡零点的分布情况决定了素数的很多性质。黎曼猜测, 那些零点都落在复平面上实部为1/2的直线上。这就是著名的黎曼假设--被誉为千禧年七大世界数学难题之一。值得注意的是, 欧拉实际上在处理素数无限问题时也用到了解析方法。
解析数论方法除了圆法、筛法等等之外, 也包括和椭圆曲线相关的模形式理论等等。此后又发展到自守形式理论,从而和表示论联系起来。
更新时间:2012-07-24 23:32