高等数学是相对初等数学而言的,它的研究对象更为复杂。通常来说,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
在中国大陆,理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学稍微深一些,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称&ldquo
关注公众号:diyijc_com
问题反馈
高等数学是相对初等数学而言的,它的研究对象更为复杂。通常来说,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
在中国大陆,理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学稍微深一些,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。
初等数学研究的是常量与匀变量,高等数学研究的是非匀变量。高等数学(它是几门课程的总称)是理、工科院校一门重要的基础学科,也是非数学专业理工科专业学生的必修数学课,也是其它某些专业的必修课。
作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。因此,学好高等数学对我们来说相当重要。
更新时间:2017-10-05 21:29